"""
MNIST example with training and validation monitoring using TensorboardX and Tensorboard.
Requirements:
Optionally TensorboardX (https://github.com/lanpa/tensorboard-pytorch): `pip install tensorboardX`
Tensorboard: `pip install tensorflow` (or just install tensorboard without the rest of tensorflow)
Usage:
Start tensorboard:
```bash
tensorboard --logdir=/tmp/tensorboard_logs/
```
Run the example:
```bash
python mnist_with_tensorboard_logger_and_low_level_apis.rst --log_dir=/tmp/tensorboard_logs
```
"""
import sys
from argparse import ArgumentParser
import logging
from ignite_framework.states import state
from ignite_framework.pipelines import SupervisedEvaluator, SupervisedTrainer
from ignite_framework.tensorboard import EnginesMetricsCharts, EnginesMetricsComparisonCharts
import torch
from torch.utils.data import DataLoader
from torch import nn
import torch.nn.functional as F
from torch.optim import SGD
from torchvision.datasets import MNIST
from torchvision.transforms import Compose, ToTensor, Normalize
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=-1)
def get_data_loaders():
data_transform = Compose([ToTensor(), Normalize((0.1307,), (0.3081,))])
with state.dataloaders as d:
# NOTE: state shortcut used: `state.train_batch_size == state.params.arguments.train_batch_size
d.trainer_loader = DataLoader(MNIST(download=True, root=state.data_dir, transform=data_transform, train=True),
batch_size=state.train_batch_size, shuffle=True)
d.xvalidator_loader = DataLoader(
MNIST(download=False, root=state.data_dir, transform=data_transform, train=False),
batch_size=state.xval_batch_size, shuffle=False)
d.validator_loader = DataLoader(
MNIST(download=False, root=state.data_dir, transform=data_transform, train=False),
batch_size=state.val_batch_size, shuffle=False)
# Not required
del d
def run():
get_data_loaders()
# # Not required, because integrated into `state` automation
# device = 'cpu'
#
# if torch.cuda.is_available():
# state.device = 'cuda'
with state.modules as m:
m.model = Net()
m.model.cuda(device=state.device_for_modules)
m.x_entropy = nn.CrossEntropyLoss()
# Not required
del m
# Directly setting attribute instaed of using `with`-statement
state.optimizers.sgd = SGD(state.model.parameters(), lr=state.lr, momentum=state.momentum)
SupervisedTrainer(name='trainer', model=state.model, optimizer=state.optimizers.sgd, loss_fn=state.x_entropy,
dataloader=state.trainer_loader, n_epochs=state.epochs)
SupervisedEvaluator(name='evaluator', model=state.model, loss_fn=state.x_entropy, dataloader=state.validator_loader,
engine_run_started_ref=state.trainer.engine_run_completed_ref)
SupervisedEvaluator(name='xvalidator', model=state.model, loss_fn=state.x_entropy,
dataloader=state.validator_loader,
engine_run_started_ref=state.trainer.get(
'n_samples_every', state.n_xval_step_samples, 'ref'),
n_samples=state.n_xval_samples)
### HARDWARE RESOURCE TRACKING TO BE IMPLEMENTED SOON ###
# ========================================================
# NOTE: The current GPU-tracker may have the issues that it is triggered by `Event.ITERATION_COMPLETED` logging
# the GPU-usage at this point (not even max usage). Unfortunately, when the iteration is completed the
# GPU-calculations are also completed, `GpuInfo` should only be measuring the resource usage during downtime.
# Therefore the new implementation will be implmented on a separate thread with slightly randomized logging
# timing.
# if sys.version_info > (3,):
# from ignite.contrib.metrics.gpu_info import GpuInfo
# try:
# GpuInfo().attach(state.trainer)
# except RuntimeError:
# print("INFO: By default, in this example it is possible to log GPU information (used memory,
# utilization). "
# "As there is no pynvml python package installed, GPU information won't be logged. Otherwise,
# please "
# "install it : `pip install pynvml`")
# Automatically identify and generate metric chats comparing the different engines
EnginesMetricsComparisonCharts(x_axis_ref=state.trainer.n_samples_ref, n_identical_metric_name_suffixes=1)
# Automatically generate for each engine a summary of all metric charts
EnginesMetricsCharts(x_axes_refs=state.trainer.n_samples_ref, n_identical_metric_name_suffixes=1)
state.run()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('--train_batch_size', type=int, default=64,
help='input batch size for training (default: 64)')
parser.add_argument('--epochs', type=int, default=10,
help='number of epochs to train (default: 10)')
parser.add_argument('--val_batch_size', type=int, default=1000,
help='input batch size for validation (default: 1000)')
parser.add_argument('--n_xval_step_samples', type=int, default=640,
help='number of samples between each evaluation step (default: 640')
parser.add_argument('--xval_batch_size', type=int, default=100,
help='input batch size for xvalidation (default: 100)')
parser.add_argument('--n_xval_samples', type=int, default=200,
help='numbers of samples infered for evaluation (default: 1000)')
parser.add_argument('--lr', type=float, default=0.01,
help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.5,
help='SGD momentum (default: 0.5)')
parser.add_argument("--log_dir", type=str, default="./tensorboard_logs",
help='log directory for Tensorboard log output, (default: `./tensorboard`)')
parser.add_argument('--data_dir', type=str, default='.',
help='data directory for MNIST dataset (default: `.`)')
args = parser.parse_args()
# Setup engine logger
# NOTE: General loggers could also be integrated in a `state.loggers` container, so users could add their preferred
# loggers to their `custom state`
logger = logging.getLogger("ignite.engine.engine.Engine")
handler = logging.StreamHandler()
formatter = logging.Formatter("%(asctime)s %(name)-12s %(levelname)-8s %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
# Changing default `tensorbaord_log_dir` with shortcut call
# NOTE: shortcut calls `state.configs.default_configs.tensorboard_log_dir = args.pop('log_dir')
state.tensorboard_log_dir = args.__dict__.pop('log_dir')
# NOTE:
# - `data_dir` will be assigned to `state.configs.user_defined_configs.data_dir` but available as `state.data_dir`
state.configs.data_dir = args.__dict__.pop('data_dir')
with state.params as p:
p.update(args.__dict__)
run()